
Bright Cluster Manager 7.0

Developer Manual
Revision: b6af50d

Date: Wed Sep 27 2023

©2015 Bright Computing, Inc. All Rights Reserved. This manual or parts
thereof may not be reproduced in any form unless permitted by contract
or by written permission of Bright Computing, Inc.

Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a regis-
tered trademark of Cray, Inc. Red Hat and all Red Hat-based trademarks
are trademarks or registered trademarks of Red Hat, Inc. SUSE is a reg-
istered trademark of Novell, Inc. PGI is a registered trademark of The
Portland Group Compiler Technology, STMicroelectronics, Inc. SGE is a
trademark of Sun Microsystems, Inc. FLEXlm is a registered trademark
of Globetrotter Software, Inc. Maui Cluster Scheduler is a trademark of
Adaptive Computing, Inc. ScaleMP is a registered trademark of ScaleMP,
Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical informa-
tion contained herein are current or planned as of the date of publication
of this document. They are reliable as of the time of this writing and are
presented without warranty of any kind, expressed or implied. Bright
Computing, Inc. shall not be liable for technical or editorial errors or
omissions which may occur in this document. Bright Computing, Inc.
shall not be liable for any damages resulting from the use of this docu-
ment.

Limitation of Liability and Damages Pertaining to
Bright Computing, Inc.
The Bright Cluster Manager product principally consists of free software
that is licensed by the Linux authors free of charge. Bright Computing,
Inc. shall have no liability nor will Bright Computing, Inc. provide any
warranty for the Bright Cluster Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third par-
ties provide the program as is without any warranty, either expressed or
implied, including, but not limited to, marketability or suitability for a
specific purpose. The user of the Bright Cluster Manager product shall
accept the full risk for the quality or performance of the product. Should
the product malfunction, the costs for repair, service, or correction will be
borne by the user of the Bright Cluster Manager product. No copyright
owner or third party who has modified or distributed the program as
permitted in this license shall be held liable for damages, including gen-
eral or specific damages, damages caused by side effects or consequential
damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing
of data, losses that must be borne by you or others, or the inability of the
program to work together with any other program), even if a copyright
owner or third party had been advised about the possibility of such dam-
ages unless such copyright owner or third party has signed a writing to
the contrary.

Table of Contents

Table of Contents . i
0.1 About This Manual . iii
0.2 About The Manuals In General iii
0.3 Getting Administrator-Level Support iv
0.4 Getting Developer-Level Support iv

1 Bright Cluster Manager Python API 1
1.1 Installation . 1

1.1.1 Windows Clients . 1
1.1.2 Linux Clients . 2

1.2 Examples . 2
1.2.1 First Program . 2

1.3 Methods And Properties . 4
1.3.1 Viewing All Properties And Methods 4
1.3.2 Property Lists . 4
1.3.3 Creating New Objects 4
1.3.4 List Of Objects . 5
1.3.5 Useful Methods . 7
1.3.6 Useful Example Program 8

2 Metric Collections 11
2.1 Metric Collections Added Using cmsh 11
2.2 Metric Collections Initialization 11
2.3 Metric Collections Output During Regular Use 12
2.4 Metric Collections Error Handling 13
2.5 Metric Collections Consolidator Syntax 13
2.6 Metric Collections Environment Variables 14
2.7 Metric Collections Examples 16
2.8 Metric Collections On iDataPlex And Similar Units 16

Preface

Welcome to the Developer Manual for Bright Cluster Manager 7.0.

0.1 About This Manual
This manual is aimed at helping developers who would like to program
the Bright Cluster Manager in order to enhance or alter its functionality.
It is not intended for end users who simply wish to submit jobs that run
programs to workload managers, which is discussed in the User Manual.
The developer is expected to be reasonably familiar with the parts of the
Administrator Manual that is to be dealt with—primarily CMDaemon, of
which cmsh and cmgui are the front ends.

This manual discusses the Python API to CMDaemon, and also covers
how to program for metric collections.

0.2 About The Manuals In General
Regularly updated versions of the Bright Cluster Manager
7.0 manuals are available on updated clusters by default at
/cm/shared/docs/cm. The latest updates are always online at
http://support.brightcomputing.com/manuals.

• The Administrator Manual describes the general management of the
cluster.

• The Installation Manual describes installation procedures for a basic
cluster.

• The User Manual describes the user environment and how to submit
jobs for the end user.

• The Cloudbursting Manual describes how to deploy the cloud capa-
bilities of the cluster.

• The Developer Manual has useful information for developers who
would like to program with Bright Cluster Manager.

• The OpenStack Deployment Manual describes how to deploy Open-
Stack with Bright Cluster Manager.

• The Hadoop Deployment Manual describes how to deploy Hadoop
with Bright Cluster Manager.

• The UCS Deployment Manual describes how to deploy the Cisco UCS
server with Bright Cluster Manager.

If the manuals are downloaded and kept in one local directory, then in
most pdf viewers, clicking on a cross-reference in one manual that refers
to a section in another manual opens and displays that section in the sec-
ond manual. Navigating back and forth between documents is usually
possible with keystrokes or mouse clicks.

http://support.brightcomputing.com/manuals

iv Table of Contents

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on
the bottom leftmost navigation button of xpdf, both navigate back to the
previous document.

The manuals constantly evolve to keep up with the development of
the Bright Cluster Manager environment and the addition of new hard-
ware and/or applications. The manuals also regularly incorporate cus-
tomer feedback. Administrator and user input is greatly valued at Bright
Computing. So any comments, suggestions or corrections will be very
gratefully accepted at manuals@brightcomputing.com.

0.3 Getting Administrator-Level Support
Unless the Bright Cluster Manager reseller offers support, sup-
port is provided by Bright Computing over e-mail via support@
brightcomputing.com. Section 10.2 of the Administrator Manual has
more details on working with support.

0.4 Getting Developer-Level Support
Developer support is given free, within reason. For more extensive sup-
port, Bright Computing can be contacted in order to arrange a support
contract.

manuals@brightcomputing.com
support@brightcomputing.com
support@brightcomputing.com

1
Bright Cluster Manager Python

API
This chapter introduces the Python API of Bright Cluster Manager. For
a head node bright70, the API reference documentation for all available
objects is available in a default cluster via browser access to the URL:

https://bright70/userportal/downloads/python

The preceding access is via the User Portal (section 9.9 of the Administrator
Manual).

The documentation is also available directly on the head node itself
at:

file:///cm/local/docs/cmd/python/index.html

1.1 Installation
The Python cluster manager bindings are pre-installed on the head node.

1.1.1 Windows Clients
For windows clients, Python version 2.5.X is needed. Newer versions of
Python do not work with the API.

For Windows a redistributable package is supplied in the
pythoncm-dist package installed on the cluster. The file at
/cm/shared/apps/pythoncm/dist/windows-pythoncm.7.0.r15673.zip
—the exact version number may differ—is copied to the Windows PC
and unzipped.

A Windows shell (cmd.exe) is opened to the directory where the
Python bindings are. The headnodeinfo.py example supplied with
the unzipped files has a line that has the following format:

cluster = clustermanager.addCluster(<parameters>);

where <parameters> is either:

’<URL>’, ’<PEMauth1>’, ’<PEMauth2>’
or
’<URL>’, ’<PFXauth>’, ”, ’<password>’

The <parameters> entry is edited as follows:

© Bright Computing, Inc.

2 Bright Cluster Manager Python API

• the correct hostname is set for the <URL> entry. By default it is set
to https://localhost:8081

• If PEM key files are to be used for client authentication,

– <PEMauth1> is set to path of cert.pem

– <PEMauth2> is set to the path of cert.key

• If a PFX file is used for client authentication,

– <PFXauth> is set to path of admin.pfx

– <password> is set to the password

To verify everything is working, it can be run as follows:

c:\python25\python headnodeinfo.py

1.1.2 Linux Clients
For Linux clients, a redistributable source package is supplied
in the pythoncm-dist package installed on the cluster. The
file at /cm/shared/apps/pythoncm/dist/pythoncm-7.
0-r18836-src.tar.bz2—the exact version number may differ—
is copied and untarred to any directory.

The build.sh script is then run to compile the source. About 4GB
of memory is usually needed for compilation, and additional packages
may be required for compilation to succeed. A list of packages needed to
build Python cluster manager bindings can be found in the README file
included with the package.

The headnodeinfo.py example supplied with the untarred files
is edited as for in the earlier windows client example, for the
clustermanager.addCluster line.

The path to the remote cluster manager library is added:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:remotecm

To verify everything is working, the following can be run:

python ./headnodeinfo.py

1.2 Examples
A set of examples can be found in /cm/local/examples/cmd/python/
on the head node of the cluster.

1.2.1 First Program
A Python script is told to use the cluster manager bindings by importing
pythoncm at the start of the script:

import pythoncm

If not working on the cluster, the administrator needs to set the path
where the shared libraries can be found (pythoncm.so in Linux, or
python.pyd in windows). This is done by adding the following to the
start of the script:

import sys

sys.path.append(".") # path to pythoncm.so/python.pyd

© Bright Computing, Inc.

/cm/shared/apps/pythoncm/dist/pythoncm-7.0-r18836-src.tar.bz2
/cm/shared/apps/pythoncm/dist/pythoncm-7.0-r18836-src.tar.bz2

1.2 Examples 3

Python cluster manager bindings allow for simultaneous connections
to several clusters. For this reason the first thing to do is to create a Clus-
terManager object:

clustermanager = pythoncm.ClusterManager()

A connection to a cluster can now be made. There are two possible
ways of connecting.

The first is using the certificate and private key file that cmsh uses by
default when it authenticates from the head node.

cluster = clustermanager.addCluster(’https://mycluster:8081’,\

’/root/.cm/admin.pem’, ’/root/.cm/admin.key’);

The second way uses the password protected admin.pfx file, which
is generated with the cmd -c command. A Python script could ask for
the password and store it in a variable for increased security.

cluster = clustermanager.addCluster(’https://mycluster:8081’,\

’/root/.cm/cmgui/admin.pfx’, ’’, ’<password>’);

Having defined the cluster, a connection can now be made to it:

isconnected = cluster.connect()

if !isconnected:

print "Unable to connect"

print cluster.getLastError()

exit(1)

If a connection cannot be made, the function cluster.connect()
returns false. The function cluster.getLastError() shows details
about the problem. The two most likely problems are due to a wrong
password setting or a firewall settings issue.

Similar to cmgui and cmsh, the cluster object contains a local cache of
all objects. This cache will be filled automatically when the connection is
established. All changes to properties will be done on these local copies
and will be lost after the Python scripts exits, unless a commit operation
is done.

The most common operation is finding specific objects in the cluster.

active = cluster.find(’active’)

if active == None:

print "Unable to find active head node"

exit(1)

else:

print "Hostname of the active head node is %s" % active.hostname

If creating an automated script that runs at certain times, then it is
highly recommended to check if objects can be found. During a failover,
for instance, there will be a period over a few minutes in which the active
head node will not be set.

It is good practice to disconnect from the cluster at the end of the
script.

cluster.disconnect()

When connecting to a cluster with a failover setup, it is the shared IP
address that should be connected to, and not the fixed IP address of either
of the head nodes.

© Bright Computing, Inc.

4 Bright Cluster Manager Python API

1.3 Methods And Properties
1.3.1 Viewing All Properties And Methods
All properties visible in cmsh and cmgui are also accessible from Python
cluster manager bindings. The easiest way to get an overview of the
methods and properties of an object is to define the following function:

import re

def dump(obj):

print "--- DUMP ---"

for attr in dir(obj):

p = re.compile(’^__.*__$’)

if not p.match(attr):

print "%s = %s" % (attr, getattr(obj, attr))

An overview of all properties and methods for the active head node
can be obtained with:

active = cluster.find(’active’)

dump(active)

1.3.2 Property Lists
Most properties are straightforward and their names are almost identical
to the cmsh equivalent.

For instance:

node.mac = ’00:00:00:00:00:00’

category.softwareimage = cluster.find(’testimage’)

Properties that contain lists, like node.roles, node.interfaces,
category.fsmounts and several others, are trickier to deal with. While
iterating over a list property is simple enough:

for role in node.roles:

print role.name

because of an implementation restriction, adding a new role requires that
a local copy of the roles list be made:

roles = node.roles

provisioningrole = pythoncm.ProvisioningRole() # Create a new pro\

visioning role object

roles.append(provisioningrole)

node.roles = roles # This will update the internal\

roles list with the local copy

1.3.3 Creating New Objects
Creating a new node can be done with:

node = pythoncm.Node()

This is valid command, but fairly useless because a node has to be
a MasterNode, PhysicalNode or VirtualSMPNode. So to create a
normal compute or login node, the object is created as follows:

node = pythoncm.PhysicalNode()

The first thing to do after creating a new object is to add it to a cluster.

© Bright Computing, Inc.

1.3 Methods And Properties 5

cluster.add(node)

It is impossible to add one node to more than one cluster.
After the node has been added its properties can be set. In cmsh and

cmgui this is semi-automated, but in Python cluster manager bindings it
has to be done by hand.

node.hostname = ’node001’

node.partition = cluster.find(’base’)

node.category = cluster.find(’default’)

Similar to the node object, a NetworkInterface object has several
subtypes: NetworkPhysicalInterface, NetworkVLANInterface,
NetworkAliasInterface, NetworkBondInterface, and
NetworkIPMIInterface.

interface = pythoncm.NetworkPhysicalInterface()

interface.name = ’eth0’

interface.ip = ’10.141.0.1’

interface.network = cluster.find(’internalnet’)

node.interfaces = [interface]

node.provisioningInterface = interface

Having set the properties of the new node, it can now be committed.

cr = node.commit()

If a commit fails for some reason, the reason can be found:

if not cr.result:

print "Commit of %s failed:" % node.resolveName()

for j in range(cr.count):

print cr.getValidation(j).msg

1.3.4 List Of Objects
In the following lists of objects:

• Objects marked with (*) cannot be used

• Trees marked with (+) denote inheritance

Roles
Role (*)

+ BackupRole

+ BootRole

+ DatabaseRole

+ EthernetSwitch

+ LoginRole

+ LSFClientRole

+ LSFServerRole

+ MasterRole

+ PbsProClientRole

+ PbsProServerRole

+ ProvisioningRole

+ SGEClientRole

+ SGEServerRole

+ SlurmClientRole

+ SlurmServerRole

+ SubnetManagerRole

+ TorqueClientRole

+ TorqueServerRole

© Bright Computing, Inc.

6 Bright Cluster Manager Python API

Devices
Device (*)

+ Chassis

+ GpuUnit

+ GenericDevice

+ PowerDistributionUnit

+ Switch (*)

+ EthernetSwitch

+ IBSwitch

+ MyrinetSwitch

Node (*)

+FSExport

+FSMount

+ MasterNode

+ SlaveNode (*)

+ PhysicalNode

+ VirtualSMPNode

Network Interfaces
NetworkInterface (*)

+ NetworkAliasInterface

+ NetworkBondInterface

+ NetworkIpmiInterface

+ NetworkPhysicalInterface

+ NetworkVLANInterface

Information Objects
ClusterSetup

GuiClusterOverview

GuiCephOverview

GuiHadoopHDFSOverview

GuaOpenStackOverview

GuiOpenStackTenantOverview

GuiGpuUnitOverview

GuiNodeOverview

GuiNodeStatus

LicenseInfo

SysInfoCollector

VersionInfo

Monitoring Configuration Objects
MonConf

ConsolidatorConf

MonHealthConf

HealthCheck

MonMetricConf

ThreshActionConf

ThreshAction

Threshold

LDAP Objects
User

Group

Category Objects
Category

FSExport

FSMount

© Bright Computing, Inc.

1.3 Methods And Properties 7

Miscellaneous Objects
SoftwareImage

KernelModule

Network

NodeGroup

Partition

+ BurnConfig

Rack

1.3.5 Useful Methods
For The Cluster Object:

Name Description

find(<name>) Find the object with a given name, <name>

find(<name>, <type>) Because it is possible to give a category and
node the same name, sometimes the type
<type> of the object needs to be specified too

getAll(<type>) Get a list of all objects of a given type: e.g.
device, category

activeMaster() Get the active master object

passiveMaster() Get the active master object

overview() Get all the data shown in the cmgui cluster
overview

add(<object>) Add a newly created object <object> to the
cluster. Only after an object is added can it
be used

pexec(<nodes>, <command>) Execute a command <command> on one or
more nodes

For Any Object:

Name Description

commit() Save changes to the cluster

refresh() Undo all changes and restore the object to its
last saved state

remove() Remove an object from the cluster

clone() Make an identical copy. The newly created
object is not added to a cluster yet

© Bright Computing, Inc.

8 Bright Cluster Manager Python API

For Any Device:

Name Description

close() Close a device

open() Open a device

powerOn() Power on a device

powerOff() Power off a device

powerReset() Power reset a device

latestMonitoringData() Return a list of the most recent monitoring
data

For Any Node:

Name Description

overview() Get the data displayed in the cmgui node
overview tab

sysinfo() Get the data displayed in the cmgui node
system information tab

pexec(<command>) Execute a command

1.3.6 Useful Example Program
In the directory /cm/local/examples/cmd/python are some exam-
ple programs using the python API.

One of these is printall.py. It displays values for objects in an
easily viewed way. With all as the argument, it displays resource objects
defined in a list in the program. The objects are ’Partition’, ’MasterNode’,
’SlaveNode’, ’Category’, ’SoftwareImage’, ’Network’, ’NodeGroup’. The
output is displayed something like (some output elided):

Example

[root@bright70 ~]# cd /cm/local/examples/cmd/python

[root@bright70 python]# ./printall all

Partition base

+- revision

| name base

| clusterName Bright 7.0 Cluster

...

| burnConfigs

| +- revision

| | name default

| | description Standard burn test.

| | configuration < 2780 bytes >

| +- revision

| | name long-hpl

...

| provisioningInterface None

| fsmounts < none >

| fsexports

| +- revision

| | name /cm/shared@internalnet

© Bright Computing, Inc.

1.3 Methods And Properties 9

| | path /cm/shared

| | hosts !17179869185!

...

Category default

+- revision

| name default

| softwareImage default-image

| defaultGateway 10.141.255.253

| nameServers < none >

...

The values of a particular resource-level object, such as softwareimage,
can be viewed by specifying it as the argument:

Example

[root@bright70 python]# ./printall.py softwareimage

softwareimage default-image

+- revision

| name default-image

| path /cm/images/default-image

| originalImage 0

| kernelVersion 2.6.32-431.11.2.el6.x86_64

| kernelParameters rdblacklist=nouveau

| creationTime 1398679806

| modules

| +- revision

| | name xen-netfront

...

| +- revision

| | name hpilo

| | parameters

| enableSOL False

| SOLPort ttyS1

| SOLSpeed 115200

| SOLFlowControl True

| notes

| fspart 98784247812

| bootfspart 98784247813

...

[root@bright70 python]#

© Bright Computing, Inc.

2
Metric Collections

This chapter gives details on metric collections.
Section 9.4.4 of the Administrator Manual introduces metric collections,

and describes how to add a metric collections script with cmgui.
This chapter covers how to add a metric collections script with cmsh.

It also describes the output specification of a metric collections script,
along with example outputs, so that a metric collections script can be
made by the administrator.

2.1 Metric Collections Added Using cmsh

A metric collections script, responsiveness, is added in the monitoring
metrics mode just like any other metric.

Example

[bright70]% monitoring metrics

[bright70->monitoring->metrics]% add responsiveness

[...[responsiveness]]% set command /cm/local/apps/cmd/scripts/metrics/s\
ample_responsiveness

[...*[responsiveness*]]% set classofmetric prototype; commit

For classofmetric, the value prototype is the class used to dis-
tinguish metric collections from normal metrics.

2.2 Metric Collections Initialization
When a metric collections script is added to CMDaemon for the first time,
CMDaemon implicitly runs it with the --initialize flag. The output
is used to define the collections table header structure. The structure is
composed of the component metrics in the collections script, and the re-
sulting structure is placed in the CMDaemon monitoring database. After
the initialization step, data values can be added to the collections table
during regular use of the script.

The displayed output of a metric collections script when using the
--initialize flag is a list of available metrics and their parameter val-
ues. The format of each line in the list is:

metric <name[:parameter]> <unit> <class> "<description>" <cumu-
lative> <min> <max>

© Bright Computing, Inc.

12 Metric Collections

where the items in the line are:

• metric: A bare word.

• <name[:parameter]>: The name of the metric, with for certain met-
rics a parameter value. For example, the metric AlertLevel can
have the parameter sum assigned to it with the “:” character.

• <unit>: The unit of measurement that the metric uses.

• <class>: Any of: misc cpu disk memory network
environmental operatingsystem internal workload
cluster.

• <description>: This can contain spaces, but should be enclosed with
quotes.

• <cumulative>: Either yes or no. This indicates whether the metric
increases monotonically (e.g., bytes received) or not (e.g., tempera-
ture).

• <min> and <max>: The minimum and maximum numeric values of
this metric are determined dynamically based on the values so far.

Example

[root@myheadnode metrics]# ./sample_responsiveness --initialize

metric util_sda % internal "Percentage of CPU time during which I/O

requests were issued to device sda" no 0 100

metric await_sda ms internal "The average time (in milliseconds) for

I/O requests issued to device sda to be served" no 0 500

2.3 Metric Collections Output During Regular Use
The output of a metric collection script without a flag is a list of outputs
from the available metrics. The format of each line in the list is:

metric <name[:parameter]> <value> [infomessage]

where the parameters to the metric bare word are:

• <name[:parameter]>: The name of the metric, with optional param-
eter for some metrics.

• <value>: The numeric value of the measurement.

• [infomessage]: An optional infomessage.

Example

[root@myheadnode metrics]# ./sample_responsiveness

metric await_sda 0.00

metric util_sda 0.00

[root@myheadnode metrics]#

© Bright Computing, Inc.

2.4 Metric Collections Error Handling 13

If the output has more metrics than that suggested by when the
--initialize flag is used, then the extra sampled data is discarded.
If the output has fewer metrics, then the metrics are set to NaN (not a
number) for the sample.

A metric or health check inside a metric collection appears as a check
when viewing metrics or healthcheck lists. Attempting to remove such a
check specifically using cmsh or cmgui only succeeds until the node is
updated or rebooted. It is the metric collection itself that should have the
check removed from within it, in order to remove the check from the list
of checks permanently.

Setting a node that is UP to a CLOSED state, and then bringing it out
of that state with the open command (section 5.5.4 of the Administrator
Manual) also has CMDaemon run the metric collections script with the
--initialize flag. This is useful for allowing CMDaemon to re-check
what metrics in the collections can be sampled, and then re-configure
them.

2.4 Metric Collections Error Handling
If the exit code of the script is 0, CMDaemon assumes that there is no
error. So, with the --initialize flag active, despite no numeric value
output, the script does not exit with an error.

If the exit code of the script is non-zero, the output of the script is
assumed to be a diagnostic message and is passed to the head node. This
shows up as an event in cmsh or cmgui.

For example, the sample_ipmi script uses the ipmi-sensors bi-
nary internally. Calling the binary directly returns an error code if the
device has no IPMI configured. However, the sample_ipmi script in
this case simply returns 0, and no output. The rationale here being that
the administrator is aware of this situation and would not expect data
from that IPMI anyway, let alone an error.

2.5 Metric Collections Consolidator Syntax
Metric collections can have a consolidator format defined per metric. The
consolidator definition must be placed as an output in the line immedi-
ately preceding the corresponding metric initialization output line. The
consolidator definition line can take the following forms:

consolidators default
consolidators none
consolidators CONSOLIDATORNAME FORMAT SPECIFICATION

The meanings of the texts after consolidators are as follows:

• default: The metrics follow the default consolidator names and
interval values (section 9.7.4, page 386 of the Administrator Man-
ual). That is, consolidator names take the value of Hour, Day, Week,
while the interval values are the corresponding durations in sec-
onds.

• consolidators none: No consolidation is done, only raw data
values are collected for the metrics.

© Bright Computing, Inc.

14 Metric Collections

• CONSOLIDATORNAME FORMAT SPECIFICATION: This has the form:
<name:interval[:kind[:tablelength]]>...

– name: the consolidator name. A special feature here is that it
can also define a new consolidator if the name does not already
exist. Mulitple consolidators can be defined in each consol-
idator definition line, with name separated from any preceding
definition on the same line by a space.

– interval: the duration in seconds, between consolidation, for
the consolidator.

– kind: an optional value of min, max, or average. By default it
is average.

– tablelength: an optional value for the length of the table, if kind
has been specified. By default it is 1000.

2.6 Metric Collections Environment Variables
The following environment variables are available for a metric collection
script, as well as for custom scripts, running from CMDaemon:

On all devices:

CMD_HOSTNAME: name of the device. For example:

CMD_HOSTNAME=myheadnode

Only on non-node devices:

CMD_IP: IP address of the device. For example:

CMD_IP=192.168.1.33

Only on node devices:

Because these devices generally have multiple interfaces, the single
environment variable CMD_IP is often not enough to express these.
Multiple interfaces are therefore represented by these environment
variables:

• CMD_INTERFACES: list of names of the interfaces attached to
the node. For example:

CMD_INTERFACES=eth0 eth1 ipmi0 BOOTIF

• CMD_INTERFACE_<interface>_IP: IP address of the inter-
face with the name <interface>. For example:

CMD_INTERFACE_eth0_IP=10.141.255.254

CMD_INTERFACE_eth1_IP=0.0.0.0

• CMD_INTERFACE_<interface>_TYPE: type of interface with
the name <interface>. For example:

© Bright Computing, Inc.

2.6 Metric Collections Environment Variables 15

CMD_INTERFACE_eth1_TYPE=NetworkPhysicalInterface

CMD_INTERFACE_ipmi0_TYPE=NetworkBmcInterface

Possible values are:

– NetworkBmcInterface

– NetworkPhysicalInterface

– NetworkVLANInterface

– NetworkAliasInterface

– NetworkBondInterface

– NetworkBridgeInterface

– NetworkTunnelInterface

– NetworkNetMapInterface

• CMD_BMCUSERNAME: username for the BMC device at this node
(if available).

• CMD_BMCPASSWORD: password for the BMC device at this node
(if available).

To parse the above information to get the BMC IP address of the node
for which this script samples, one could use (in Perl):

my $ip;

my $interfaces = $ENV{"CMD_INTERFACES"};

foreach my $interface (split(" " , $interfaces)) {

if($ENV{"CMD_INTERFACE_" . $interface . "_TYPE"} eq

"NetworkBmcInterface") {

$ip = $ENV{"CMD_INTERFACE_" . $interface . "_IP"};

last;

}

}

$ip holds the bmc ip

A list of environment variables available under the CMDae-
mon environment can be found by running a script under CMDae-
mon and exporting the environment variables to a file for viewing.
For example, the /cm/local/apps/cmd/scripts/healthchecks/
testhealthcheck script can be modified and run to sample on the
head node, with the added line: set>/tmp/environment. The result-
ing file /tmp/environment that is generated as part of the healthcheck
run then includes the CMD_* environment variables.

Example

CMD_BMCPASSWORD

CMD_BMCUSERNAME

CMD_CLUSTERNAME

CMD_CMDSTARTEDTIME

CMD_DEVICE_TYPE

CMD_EXPORTS

CMD_FSEXPORT__SLASH_cm_SLASH_shared_AT_internalnet_ALLOWWRITE

CMD_FSEXPORT__SLASH_cm_SLASH_shared_AT_internalnet_HOSTS

CMD_FSEXPORT__SLASH_cm_SLASH_shared_AT_internalnet_PATH

CMD_FSEXPORT__SLASH_home_AT_internalnet_ALLOWWRITE

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/healthchecks/testhealthcheck
/cm/local/apps/cmd/scripts/healthchecks/testhealthcheck
set > /tmp/environment
/tmp/environment

16 Metric Collections

CMD_FSEXPORT__SLASH_home_AT_internalnet_HOSTS

CMD_FSEXPORT__SLASH_home_AT_internalnet_PATH

CMD_FSEXPORT__SLASH_var_SLASH_spool_SLASH_burn_AT_internalnet_ALLOWWRITE

CMD_FSEXPORT__SLASH_var_SLASH_spool_SLASH_burn_AT_internalnet_HOSTS

CMD_FSEXPORT__SLASH_var_SLASH_spool_SLASH_burn_AT_internalnet_PATH

CMD_HOSTNAME

CMD_INTERFACES

CMD_INTERFACE_eth0_IP

CMD_INTERFACE_eth0_MTU

CMD_INTERFACE_eth0_SPEED

CMD_INTERFACE_eth0_STARTIF

CMD_INTERFACE_eth0_TYPE

CMD_INTERFACE_eth1_IP

CMD_INTERFACE_eth1_MTU

CMD_INTERFACE_eth1_SPEED

CMD_INTERFACE_eth1_STARTIF

CMD_INTERFACE_eth1_TYPE

CMD_IP

CMD_MAC

CMD_METRICNAME

CMD_METRICPARAM

CMD_MOUNTS

CMD_NODEGROUPS

CMD_PARTITION

CMD_PORT

CMD_PROTOCOL

CMD_ROLES

CMD_SCRIPTTIMEOUT

CMD_STATUS

CMD_STATUS_CLOSED

CMD_STATUS_HEALTHCHECK_FAILED

CMD_STATUS_HEALTHCHECK_UNKNOWN

CMD_STATUS_MESSAGE

CMD_STATUS_RESTART_REQUIRED

CMD_STATUS_STATEFLAPPING

CMD_STATUS_USERMESSAGE

CMD_SYSINFO_SYSTEM_MANUFACTURER

CMD_SYSINFO_SYSTEM_NAME

CMD_USERDEFINED1

CMD_USERDEFINED2

2.7 Metric Collections Examples
Bright Cluster Manager has several scripts in the
/cm/local/apps/cmd/scripts/metrics directory. Among
them are the metric collections scripts testmetriccollection
and sample_responsiveness. A glance through them while reading
this chapter may be helpful.

2.8 Metric Collections On iDataPlex And Similar Units
IBM’s iDataPlex is a specially engineered dual node rack unit. When the
term iDataPlex is used in the following text in this section, it also implies
any other dual node units that show similar behavior.

This section gives details on configuring an iDataPlex if IPMI metrics

© Bright Computing, Inc.

2.8 Metric Collections On iDataPlex And Similar Units 17

retrieval seems to skip most IPMI values from one of the nodes in the
unit.

When carrying out metrics collections on an iDataPlex unit, Bright
Cluster Manager should work without any issues. However, it may be
that due to the special paired node design of an iDataPlex unit, most IPMI
metrics of one member of the pair are undetectable by the sample_ipmi
script sampling on that particular node. The missing IPMI metrics can
instead be retrieved from the second member in the pair (along with the
IPMI metrics of the second member).

The output may thus look something like:

Example

[root@master01 ~]# cmsh

[master01]% device latestmetricdata node181 | grep Domain

Metric Value

---------------------------- -----

Domain_A_FP_Temp 23

Domain_A_Temp1 39

Domain_A_Temp2 37

Domain_Avg_Power 140

Domain_B_FP_Temp 24

Domain_B_Temp1 40

Domain_B_Temp2 37

[master01]% device latestmetricdata node182 | grep Domain

Metric Value

---------------------------- -----

Domain_A_FP_Temp no data

Domain_A_Temp1 no data

Domain_A_Temp2 no data

Domain_Avg_Power 170

Domain_B_FP_Temp no data

Domain_B_Temp1 no data

Domain_B_Temp2 no data

[master01]%

Because there are usually many iDataplex units in the rack, the metrics
retrieval response of each node pair in a unit should be checked for this
behavior.

The issue can be dealt with by Bright Cluster Manager
by modifying the configuration file for the sample_ipmi
script in /cm/local/apps/cmd/scripts/metrics/
configfiles/sample_ipmi.conf. Two parameters that
can be configured there are chassisContainsLeadNode and
chassisContainsLeadNodeRegex.

• Setting chassisContainsLeadNode to on forces the
sample_ipmi script to treat the unit as an iDataPlex unit.

In particular:

– auto (recommended) means the unit is checked by the IPMI
metric sample collection script for whether it behaves like an
iDataPlex unit.

– on means the unit is treated as an iDataplex node pair, with
one node being a lead node that has all the IPMI metrics.

© Bright Computing, Inc.

/cm/local/apps/cmd/scripts/metrics/configfiles/sample_ipmi.conf
/cm/local/apps/cmd/scripts/metrics/configfiles/sample_ipmi.conf

18 Metric Collections

– off means the unit is treated as a non-iDataPlex node pair,
with each node having normal behavior when retrieving IPMI
metrics. This setting may need to be used in case the default
value of auto ever falsely detects a node as part of an iData-
Plex pair.

• The value of chassisContainsLeadNodeRegex can be set to a
regular expression pattern that matches the system information pat-
tern for the name, as obtained by CMDaemon for an iDataPlex unit
(or similar clone unit). The pattern that it is matched against is the
output of:

cmsh -c ’device ; sysinfo master | grep "^System Name"’

If the pattern matches, then the IPMI sample collection script as-
sumes the unit behaves like an iDataPlex dual node pair. The miss-
ing IPMI data values are then looked for on the lead node.

The value of chassisContainsLeadNodeRegex is set to
iDataPlex by default.

© Bright Computing, Inc.

	Table of Contents
	0.1 About This Manual
	0.2 About The Manuals In General
	0.3 Getting Administrator-Level Support
	0.4 Getting Developer-Level Support
	1 Bright Cluster Manager Python API
	1.1 Installation
	1.1.1 Windows Clients
	1.1.2 Linux Clients

	1.2 Examples
	1.2.1 First Program

	1.3 Methods And Properties
	1.3.1 Viewing All Properties And Methods
	1.3.2 Property Lists
	1.3.3 Creating New Objects
	1.3.4 List Of Objects
	1.3.5 Useful Methods
	1.3.6 Useful Example Program

	2 Metric Collections
	2.1 Metric Collections Added Using cmsh
	2.2 Metric Collections Initialization
	2.3 Metric Collections Output During Regular Use
	2.4 Metric Collections Error Handling
	2.5 Metric Collections Consolidator Syntax
	2.6 Metric Collections Environment Variables
	2.7 Metric Collections Examples
	2.8 Metric Collections On iDataPlex And Similar Units

